久久久久久久999_99精品久久精品一区二区爱城_成人欧美一区二区三区在线播放_国产精品日本一区二区不卡视频_国产午夜视频_欧美精品在线观看免费

 找回密碼
 立即注冊

QQ登錄

只需一步,快速開始

搜索
查看: 2410|回復: 0
打印 上一主題 下一主題
收起左側

GD32L233C-START DAC輸出(正弦波、鋸齒波、方波)

[復制鏈接]
跳轉到指定樓層
樓主
1.介紹
GD32L233C采用的是一款M23的內核。這個芯片據說功耗非常的低,低到什么程度呢?等后面我們再進行測試,今天我們主要來測試GD32L233C-START的DAC,既然要測試DAC,示波器是不可少的,這個實驗在家做,然而LZ家里并沒有示波器,不過最近看到一款好東西,LOTO,看過這款示波器的參數,還不錯。所以入手了一款,測量芯片輸出的DAC應該沒什么問題,接下來開始測試吧。
2.設計
首先需要輸出讓芯片輸出DAC,而且還需要輸出波形,這個稍微費點功夫,之前在GD32L233C-START移植了RTThread,現在在這個代碼的基礎上添加DAC的輸出程序,這個程序移植了其他網友的,代碼我也貼出來,經過測試,代碼沒有啥問題:
比較麻煩的是正弦波的代碼:
const float sinus_I_quarter[91] =
{
    0.0000, 0.0175, 0.0349, 0.0523, 0.0698, 0.0872, 0.1045, 0.1219, 0.1392, 0.1564, // 00 .. 09
    0.1736, 0.1908, 0.2079, 0.2250, 0.2419, 0.2588, 0.2756, 0.2924, 0.3090, 0.3256, // 10 .. 19
    0.3420, 0.3584, 0.3746, 0.3907, 0.4067, 0.4226, 0.4384, 0.4540, 0.4695, 0.4848, // 20 .. 29
    0.5000, 0.5150, 0.5299, 0.5446, 0.5592, 0.5736, 0.5878, 0.6018, 0.6157, 0.6293, // 30 .. 39
    0.6428, 0.6561, 0.6691, 0.6820, 0.6947, 0.7071, 0.7193, 0.7314, 0.7431, 0.7547, // 40 .. 49
    0.7660, 0.7771, 0.7880, 0.7986, 0.8090, 0.8192, 0.8290, 0.8387, 0.8480, 0.8572, // 50 .. 59
    0.8660, 0.8746, 0.8829, 0.8910, 0.8988, 0.9063, 0.9135, 0.9205, 0.9272, 0.9336, // 60 .. 69
    0.9397, 0.9455, 0.9511, 0.9563, 0.9613, 0.9659, 0.9703, 0.9744, 0.9781, 0.9816, // 70 .. 79
    0.9848, 0.9877, 0.9903, 0.9925, 0.9945, 0.9962, 0.9976, 0.9986, 0.9994, 0.9998, // 80 .. 89
    1.0000                                                                          // 90
};

#define CIRCLE_QUARTER_1        1
#define CIRCLE_QUARTER_2        2
#define CIRCLE_QUARTER_3        3
#define CIRCLE_QUARTER_4        4
float sinus_lookup (unsigned int angle)
{
    float sin_value;
    unsigned int circle_quarter;
    // correct angles outside the accepted angle range into 0 .. 359
    if (angle > 359u)
        angle = angle % 360u;
    circle_quarter = 1 + (angle / 90u);
    switch (circle_quarter)
    {
        case CIRCLE_QUARTER_1: // 00 .. 89
            sin_value = sinus_I_quarter[angle];
            break;
        case CIRCLE_QUARTER_2: // 90 .. 179
            sin_value = sinus_I_quarter[180 - angle];
            break;
        case CIRCLE_QUARTER_3: // 180 .. 269
            sin_value = -sinus_I_quarter[angle - 180];
            break;
        case CIRCLE_QUARTER_4: // 270 .. 359
            sin_value = -sinus_I_quarter[360 - angle];
            break;
    }
    return sin_value;
}

void plot_sin(uint32_t f, uint32_t delta_f)
{
    /* 定時周期為T=1/delta_f, f=1/(pMax*T) */
    static uint32_t point = 0;
    uint32_t pMAX = delta_f/f;
    uint32_t value = 0;
    if (point++ > pMAX) point = 0;   
    value = (uint32_t)((sinus_lookup(360*point/pMAX)+1)*10000)*2047/10000;
    dac_software_trigger_enable();
    dac_data_set(DAC_ALIGN_12B_R, value);
}
接下來是鋸齒波和方波的代碼,這兩個代碼比較簡單:
void plot_triangle(uint32_t f, uint32_t delta_f)
{
    /* 定時周期為T=1/delta_f, f=1/(pMax*T) */
    static uint32_t point = 0;
    uint32_t pMAX = delta_f/f;
    uint32_t pMAX2 = pMAX/2;
    uint32_t value = 0;
    if (++point > pMAX) point = 0;
    if (point < pMAX2)
    {
        value = point * 4095 / pMAX2;
    }
    else
    {
        value = (pMAX - point) * 4095 / pMAX2;
    }
    dac_software_trigger_enable();
    dac_data_set(DAC_ALIGN_12B_R, value);
}
void plot_square(uint32_t f, uint32_t delta_f)
{
    /* 定時周期為T=1/delta_f, f=1/(pMax*T) */
    static uint32_t point = 0;
    uint32_t pMAX = delta_f/f;
    uint32_t pMAX2 = pMAX/2;
    uint32_t value = 0;
    if (++point > pMAX) point = 0;
    if (point < pMAX2)
    {
        value = 0;
    }
    else
    {
        value = 0xFFF;
    }
    dac_software_trigger_enable();
    dac_data_set(DAC_ALIGN_12B_R, value);
}
最后需要開啟一個定時器,還有DAC的初始化:
void timerx_init(uint32_t timer_periph, uint16_t period, uint16_t prescaler)
{
    /* TIMER1 configuration: input capture mode -------------------
    the external signal is connected to TIMER1 CH0 pin (PA0)
    the rising edge is used as active edge
    the TIMER1 CH0CV is used to compute the frequency value
    ------------------------------------------------------------ */
    timer_parameter_struct timer_initpara;
    timer_ic_parameter_struct timer_icinitpara;

    /* enable the peripherals clock */
    rcu_periph_clock_enable(RCU_TIMER2);

    /* deinit a TIMER */
    timer_deinit(timer_periph);
    /* initialize TIMER init parameter struct */
    timer_struct_para_init(&timer_initpara);
    /* TIMER1 configuration */
    timer_initpara.prescaler        = prescaler;
    timer_initpara.alignedmode      = TIMER_COUNTER_EDGE;
    timer_initpara.counterdirection = TIMER_COUNTER_UP;
    timer_initpara.period           = period;
    timer_initpara.clockdivision    = TIMER_CKDIV_DIV1;
    timer_init(timer_periph, &timer_initpara);

    /* TIMER1 CH0 input capture configuration */
    timer_icinitpara.icpolarity  = TIMER_IC_POLARITY_RISING;
    timer_icinitpara.icselection = TIMER_IC_SELECTION_DIRECTTI;
    timer_icinitpara.icprescaler = TIMER_IC_PSC_DIV1;
    timer_icinitpara.icfilter = 0x00;
    timer_input_capture_config(timer_periph, TIMER_CH_0, &timer_icinitpara);

    /* auto-reload preload enable */
    timer_auto_reload_shadow_enable(timer_periph);
    /* clear channel 0 interrupt bit */
    timer_interrupt_flag_clear(timer_periph, TIMER_INT_CH0);
    /* channel 0 interrupt enable */
    timer_interrupt_enable(timer_periph, TIMER_INT_CH0);

    /* enable a TIMER */
    timer_enable(timer_periph);
}

#define DAC_WAVE_TEST

void timer2_init(void)
{
    timer_deinit(TIMER2);
    rcu_periph_clock_enable(RCU_TIMER2);
#ifdef DAC_WAVE_TEST
    timerx_init(TIMER2, 639, 9);  // 100KHz 0.1ms
#endif
    timer_interrupt_enable(TIMER2, TIMER_INT_UP);
    nvic_irq_enable(TIMER2_IRQn, 3);
}

void TIMER2_IRQHandler(void)
{
#ifdef DAC_WAVE_TEST
    plot_sin(100, 10000);       //正弦波
    //plot_triangle(1, 10000);  //鋸齒波
    //plot_square(1, 10000);    //方波
#endif
    timer_interrupt_flag_clear(TIMER2, TIMER_INT_FLAG_UP);
}

void dac1_init(void)
{
    rcu_periph_clock_enable(RCU_GPIOA);
    rcu_periph_clock_enable(RCU_DAC);
    gpio_mode_set(GPIOA, GPIO_MODE_ANALOG, GPIO_PUPD_NONE, GPIO_PIN_4);
    dac_deinit();
    /* software trigger */
    dac_trigger_enable();
    dac_trigger_source_config(DAC_TRIGGER_SOFTWARE);
    /* no noise wave */
    dac_wave_mode_config(DAC_WAVE_DISABLE);
    /* noise wave - triangle */
    //dac_wave_mode_config(DAC_WAVE_MODE_TRIANGLE);
    //dac_triangle_noise_config(DAC_TRIANGLE_AMPLITUDE_4095);
    /* noise wave - lfsr */
    //dac_wave_mode_config(DAC_WAVE_MODE_LFSR);
    //dac_lfsr_noise_config(DAC_LFSR_BITS11_0);
    dac_output_buffer_enable();
    /* enable DAC and set data */
    dac_enable();
    dac_software_trigger_enable();
    dac_data_set(DAC_ALIGN_12B_R, 0);
}
這樣就可以輸出正弦波、鋸齒波和方波了。
3.波形測量
接下來我們來看一下輸出的波形是否符合要求,首先需要將【GD32L233C-START】開發板連接LOTO示波器,分別連接GND和PA4管教,連接效果圖如下圖1所示。

圖1

然后讓DAC輸出正弦波,看一下波形如何。

圖2

從上圖2中可以看到,一個周期大約在10ms,所以正弦波的周期為100Hz,輸出還是聽精準的。
然后輸出鋸齒波看看波形如何。

圖3

從上圖3可以得出,鋸齒波的波形頻率為1Hz。
最后我們來看看方波的波形圖如何。

圖4

從上圖4可以看到,方波的波形頻率為1Hz。
從上面波形可以得出,【GD32L233C-START】的定時器比較精準,DAC的輸出值也比較穩定,性能還是不錯的!
4.總結
剛入手的LOTO示波器還不錯,測量的精度挺高的,不過還有好多設置沒弄明白,等后續多琢磨琢磨。做電子的示波器是必不可少的,我先替你們測試測試這個示波器如何。
GD32L233C是新出來的芯片,整體功能還需要多進行測試,它最突出的低功耗后續要好好測量一下,這次就先到這里了。

分享到:  QQ好友和群QQ好友和群 QQ空間QQ空間 騰訊微博騰訊微博 騰訊朋友騰訊朋友
收藏收藏1 分享淘帖 頂 踩
回復

使用道具 舉報

您需要登錄后才可以回帖 登錄 | 立即注冊

本版積分規則

小黑屋|51黑電子論壇 |51黑電子論壇6群 QQ 管理員QQ:125739409;技術交流QQ群281945664

Powered by 單片機教程網

快速回復 返回頂部 返回列表
主站蜘蛛池模板: 久久9视频 | 日本高清视频在线播放 | 精品福利一区二区三区 | 亚洲成人av在线 | 一区二区av| 国产一在线观看 | 视频一区在线观看 | 精品国产一区二区三区性色 | 99精品在线| 超碰免费观看 | 99精品一级欧美片免费播放 | 欧美日韩综合 | 99热这里都是精品 | 日本高清精品 | 91精品国产综合久久久久 | 久久不卡 | av一区二区三区 | 中文字幕第一页在线 | 91操操操 | 一区二区三区精品 | 99视频网站| 国内精品久久精品 | 日日精品 | 国产精品久久久久久久久免费桃花 | 丝袜美腿一区二区三区 | va精品| 久久中文字幕一区 | 亚洲永久在线 | 国产美女福利在线观看 | 人干人人 | 中文字幕亚洲一区二区三区 | 国产精品久久久久久久久动漫 | 国产一区二区精品在线观看 | 男人的天堂久久 | 久久九精品 | www.4567 | 午夜一区二区三区视频 | 午夜影晥 | 国产色婷婷精品综合在线手机播放 | 狠狠干狠狠操 | 精品欧美乱码久久久久久1区2区 |