變頻技術是電力電子技術的主要組成部分,應用于包括交流電機的調速和供電電源等多個重要領域。數字信號處理器(DSP)已廣泛應用在高頻開關電源的控制,采取DSP作為變頻電源的控制核心,可以用最少的軟硬件實現靈活、準確的在線控制。本文提出了一種基于DSP(數字信號處理器TMS320LF2407)的SPWM三相間接變頻電源系統。數字信號處理器TMS320LF2407既有一般DSP芯片的特點,還在片內集成了許多外設電路,使其可以很方便地實現變頻電源控制。本文中,控制系統采用了工程應用較多的正弦脈寬凋制技術,該技術具有算法簡單,硬件實現容易,諧波較小等優點,可以充分發揮DSP的高速性、實時性、可靠性等方面的特點,結合相應的軟件,應用一些改進的算法實現了SPWM調制,輸出了質量較好、頻率和幅值可任意改變的控制信號。 首先介紹了變頻電源的拓撲結構以及原理,設計了以三菱IPM模塊為基礎的包括整流電路、逆變電路、輸出濾波器的主回路。在分析了SPWM調制原理的基礎上,提出了改進型的規則采樣法產生SPWM波。另外并對死區產生的影響做了分析,并給出了兩種補償方法。 在變頻電源數字控制器國內外研究的基礎上,提出了一種基于數字信號處理器(DSP)的控制器硬件結構,并對控制器的實時性、可靠性和兼容性作了詳細的分析。為滿足高速和精確的采樣,論文在控制器硬件中設計了鎖相環電路。為滿足智能功率模塊(IPM)對死區時間的要求,在對電路仿真分析的前提下,論文在控制器硬件中設計了獨立的硬件死區延時電路。 控制器的系統軟件設計分為人機接口程序和控制程序。人機接口程序實現了實時電壓電流數據及其波形顯示,控制參數顯示及在線修改等功能;控制程序實現了信號采樣分析、PWM脈沖調制和觸發、PI控制器等程序。 1 系統的結構 圖l為變頻電源基本控制電路硬件框圖。變頻電源采用高頻SPWM技術和通用電壓型單相全橋逆變電路,選取ICBT功率模塊作為開關器件,控制電路采用全數字化設計。

輸出電壓和電感電流通過采樣網絡,將輸入信號轉換為TMS320LF2407所需要的電平,接至TMS3201F2407的A/D轉換口。通過鍵盤鍵入所要求的輸出電壓值、頻率值,由SCI模塊與DSP實現通訊。得到逆變器當前工作的基準電壓信號,經過電壓電流調節器獲得實際的正弦調制信號,與DSP定時器產生的三角波載波信號相交截,輸出帶有一定死區的驅動控制信號,經驅動單元進行隔離放大后送到IGBT。DSP可以把當前時刻的輸出電壓、頻率值送給單片機并在8位LED上顯示出來。為了保證過壓、欠壓、過流(過載)的情況下能有效地保護功率開關和負載,在本系統中設置了保護電路,一旦出現故障,PDPINT引腳為低電平狀態,封鎖驅動脈沖控制信號,切斷變頻電源輸出。 2 SPWM原理 在進行脈寬調制時,使脈沖系列的占空比按正弦規律來安排。當正弦值為最大值時,脈沖的寬度也最大,而脈沖間的間隔則最小,反之,當正弦值較小時,脈沖的寬度也小,而脈沖間的間隔則較大,這樣的電壓脈沖系列可以使負載電流中的高次諧波成分大為減小,稱為正弦波脈寬調制。 PWM的全稱是Pulse Width Modulation(脈沖寬度調制),它是通過改變輸出方波的占空比來改變等效的輸出電壓。廣泛的用于電動機調速和閥門控制,比如我們現在的電動車電機調速就是使用這種方式。所謂SPWM,就是在PWM的基礎上改變了調制脈沖方式,脈沖寬度時間占空比按正弦規率排列,這樣輸出波形經過適當的濾波可以做到正弦波輸出。它廣泛的用于支流交流逆變器等,比如高級一些的UPS就是一個例子。三相SPWM是使用SPWM模擬市電的三相輸出,在變頻器領域被廣泛的采用。
2.1 實施SPWM的基本要求 (1)必須實時地計算調制波(正弦波)和載波(三角波)的所有交點的時間坐標,根據計算結果,有序地向逆變橋中各逆變器件發出“通”和“斷”的動作指令。 (2)調節頻率時,一方面,調制波與載波的周期要同時改變(改變的規律本文不作介紹);另一方面,調制波的振幅要隨頻率而變,而載波的振幅則不變,所以,每次調節后,所膠點的時間坐標都 必須重新計算。 要滿足上述要求,只有在計算機技術取得長足進步的20世紀80年代才有可能,同時,又由于大規模集成電路的飛速發展,迄今,已經有能夠產生滿足要求的SPWM波形的專用集成電路了。 3 SPWM波的軟件設計 變頻電源研制的核心是SPWM波的生成,可利用DSP通過軟件來實現,系統采用了雙閉環反饋的控制策略,其外環為輸出電壓反饋,電壓調節器一般采用PI形式,電感電流反饋構成內環,電流環設計為比例環節。由圖l可以看出,輸出電壓的信號經調理采樣生成Vf后直接反饋,與參考正弦電壓Vref比較后,經PI調節后作為電流內環的給定信號Ig。其與電感電流反饋值If比較得到的誤差經P調節,作為調制波與三角載波進行交截產生SPWM開關信號。為了便丁變頻器在線調試,所生成的SPWM波調制比必須可在一定范圍任意改變,且誤差較小。由上所述,可知SPWM波的生成涉及3個方面:獲得參考止弦電壓Vref、實現電壓電流雙閉環控制、產生三角載波。其中,三角載波的實現很簡單,可由DSP中的通用定時器產生,本設計中,使用了通用定時器l,可根據載波頻率確定定時器l中的周期寄存器TIPR的值。下面著重介紹前兩個方面所涉及的沒計和算法。 3.1基準正弦電壓信號的生成 正弦信號源在實驗室和電子工程設計中有著十分重要的作用,而傳統的正弦信號源根據實際需要一般價格昂貴,低頻輸出時性能不好且不便于自動調節,工程實用性較差。綜合分析各項指標的測試結果發現,該設計頻率變化范圍大,信號穩定度高,失真度好,達到了性能良好的設計要求。 DSP實時地從單片機讀取所需要的電壓的頻率和幅值作為當前輸出電壓的基準(給定)。獲取當前時刻的正弦值,基準正弦信號是通過查表法產生的。在數字控制系統中正弦基準信號就是一個正弦數據表格,故應將正弦波按其表達式制成0°~360°的表格供查用,在本設計中,正弦數據表格中數據點數選為1024,可將其數值放在片外數據存儲器。有如卜關系式: 
式中:fs為當前時刻調制頻率; t為采樣時刻; N為當前時刻處在整個調制周期的第N個脈沖。 由于本系統系變頻電源,即fS是在變化的,且系統采用的是異步調制,所以N也是隨fS變化而變化的。由此必須實時變化定時時間T以確保整個周期的脈沖數最大限度地接近整數,以避免或減少輸出波形含有基波的子諧波;此外,還須實時地改變脈沖序列,以保證輸出電壓值不發生較大的跳變。
3.1.1 實時改變定時時間 假設fS=400 Hz,則頻率凋制比Mf為

由于整個周期的脈沖數NE超過1,所以NE只能選用定標為Q0,即NE只能為整數,所以NE=62,從而在脈沖數上出現了相差了O.5個,反映在橋臂輸出電壓上,有正負輸出所含的脈沖數不相同。由此會產生基頻的子諧波。 如果我們以當前的脈沖數NE回推出開關頻率,則有fc=62x400=24.8kHz,這樣確定的開關頻率,就最大限度地保汪了正負調制周期的脈沖數近似相同。設計中,定時器1的工作方式設定為連續增減計數方式,故 其中fcpu=20 MHz為時鐘頻率,開關頻率25 kHz時可得定時時間T為40μs,T1PR為400;而開關頻率為24.8 kHz時可得定時時間T為40.65μs,T1PR為403.225,T1PR定標為Q0,所以只能為整數403,故求得頻率調制比 ,所以正負調制周期的脈沖數相差極少,為0.035,這樣就最大限度的消除了基頻的子諧波。 3.1.2 實時改變脈沖序列 脈沖序列是一種連續有序輸出的具有二進制數特點的脈沖隊列,它可通過一路或多路同步輸出。 當頻率不發生改變時,DSP按原來的輸出序列(N=1,2,…NE)循環輸出脈沖,設在第N個周期時,頻率發生改變,則DSP應按新的脈沖序列(N′=l,2,…NE′)輸出脈沖。 圖2中,在N=25時刻頻率從500Hz變化到250Hz,由于N=25對應輸出頻率500Hz為零點處,對應于輸出頻率250Hz為正峰值處,所以如果不改變輸出脈沖序列,則會導致輸出電壓相位和電壓值都出現跳變,如圖2(a)所示;圖2(b)中按一定的規律改變輸出脈沖序列,輸出電壓相位和電壓值就不會出現跳變。為了保證在頻率切換過程中電壓的相位變化最小,輸出電壓值不發生較大的跳變,應按下式來確定新的脈沖序列中起始的脈沖序號N′,即令: 
具體流程如圖3所示。 
3.2 雙閉環控制實現 圖4為電壓、電流雙閉環數寧控制流程圖。在實際應用中,考慮到一些具體情況,還需對電壓調節器的數字PI調節及電流調節器的數字P調節加以一定的限制,針對不同的情況采取最佳控制方法。故在圖4中(1)、(1’)、(2)、(3)、(3’)處采用了一些改進算法及策略,下面分別加以簡單介紹。 
在圖4中(1)和(1’)處設置了死區,岡為在輸出變化較小時,通過計算得到的PWM控制寄存器的值可能也會有小幅度的振動,這樣會使系統不穩定。若設置適當的死區范圍,則可以消除由此引起的振蕩,又不會太大影響輸出精度。根據實際情況分別設定最小輸入偏差量e1(e1’),即當|ev(k)|<e1(|ei(k)|<e1’時,控制最保持不變,跳過PI運算或P運算;圖4中(3)和(3’)處對相應的輸出值進行了限幅,這是由于當PI調節器或P調節器中輸出值很大時,不僅容易造成控制規律錯誤,而且可能引起系統損壞,輸出限幅可以避免上述情形的發生:PI調節引入積分環節的目的是為了消除靜差,提高精度,但當被控量與設定值的偏差較大時會造成PI運算的積分積累,引起系統較大的超調,穩定性減弱。故在圖4中(2)處對PI控制積分分離,設置偏差閾值e0,當|ev(k)|>e0,取消積分作用,用P控制,當|ev(k)|≤e0,引入積分作用,這樣既保持了積分作用,又減小超調量。使系統的控制性能有很大改善。
4 實驗結果 根據上述基本編程思路,編制了一個凋制比N可任意改變的通用SPWM產生軟件,只要通過按鍵輸入相應的數據,就可以根據負載的需要產生任意輸出頻率和電壓幅值的SPWM波。研制了一臺容量為5000VA的變頻器樣機,并進行了實驗,實驗結果表明,輸出電壓波形光滑,波形失真度低,輸出電壓的THD≤2%。圖5中,通過實時改變給定頻率以調節輸出電壓頻率,頻率由低逐漸增高,圖6中,通過實時改變給定電壓幅值以調節輸出電壓,電壓由低逐漸增高。從頻率、電壓的動態過程可以看出系統實現了實時變頻和變壓。

5 結語 數字信號處理器(DSP)做某些模擬工作比模擬電路要出色,因此得以生存。在某些情況下,由于成本或復雜性的原因,任務甚至不能考慮用模擬電路,DSP仍然是一種可行的選擇,在很多情況下可以輕松地完成那些任務。這是因為DSP進行算術運算既好又快,如加法和乘法。聰明的數學家和工程師利用了這一實際,通過創造算法來解決主要采用兩種數、運算的復雜的信號處理任務。本文以DSP作為主控芯片,設計并實現了SPWM變頻電源數字化控制,該方式控制靈活、調試方便、可靠性高。在使用雙閉環控制策略的變頻電源中,應用適合于DSP特點的一些算法,編程產生了可以變頻變壓的SPWM波信號,設計的方法是可行的。數字化使得系統具有很強的可編程性,這樣系統更易于更新和升級,并獲得了比較好的實驗效果。為了更好地理解各種DSP芯片的可用選項以及器件各部分是如何配合作為一個整體,分析當今市場上幾種有代表性的DSP是有幫助的。我們將仔細研究單核、單核加微控制器以及多核DSP芯片的例子。
|